Wireless technologies in intelligent transportation systems / / Ming-Tuo Zhou, Yan Zhang, and Laurence T. Yang, editors.

Gespeichert in:
Bibliographische Detailangaben
Beteiligte Personen Zhou, Ming-Tuo, Zhang, Yan, Yang, Laurence Tianruo
Ausgabe1st ed.
Ort, Verlag, Jahr New York : Nova Science Publishers , 2010
Umfang1 online resource (419 pages)
ISBN1-61122-571-X
SpracheEnglisch
ZusatzinfoIntro -- WIRELESS TECHNOLOGIES IN INTELLIGENT TRANSPORTATION SYSTEMS -- WIRELESS TECHNOLOGIES IN INTELLIGENT TRANSPORTATION SYSTEMS -- CONTENTS -- PREFACE -- PART 1.HARDWARE, IMPLEMENTATION AND PHYSICALLAYER TECHNOLOGIES -- Chapter 1RADAR SENSOR TECHNOLOGY AND TESTREQUIREMENTS IN AUTOMOTIVE APPLICATIONS -- Abstract -- 1. Introduction -- 2. Automotive Radar Technology -- Applications Overview -- ACC Radar System Requirements -- ACC Radar Antenna Types -- Radar Types and Modulation Schemes -- FM-CW -- FSK -- Pulse -- 3. ACC Radar Test Requirements -- Component Level -- Sensor Functional Testing -- Sensor Alignment on Vehicle -- Optical Mechanical Alignement -- Using Internal Angle Measurements -- RF Alignement -- Built-in Testing and Alignment -- 4. Conclusion -- References -- Chapter 2RADIO CHANNEL MODELINGFOR VEHICLE-TO-VEHICLE/ROADCOMMUNICATIONS -- Abstract -- Abbreviations -- 1. Introduction -- 1.1. Defining the V2V and V2R Channels -- 1.2. The V2V Channel -- 1.3. The V2R Channel -- 1.4. V2V/V2R Communication Frequency Bands, and the DSRC Standard -- 1.5. V2V/V2R Channels vs. Traditional Mobile Channels -- 1.6. Importance of Channel Modeling -- 2. Statistical Channel Characteristics -- 2.1. Basics -- 2.2. Small Scale vs. Large Scale Fading -- 2.3. The Multipath Channel Impulse Response -- 2.4. CIR and CTF Correlation Functions, and Doppler -- 2.5. Uncorrelated Scattering -- 2.6. Wide-Sense Stationarity -- 2.7. Wide-Sense Stationarity, Uncorrelated Scattering -- 2.8. Non-stationary Channels and Correlated Scattering -- 2.9. Remarks on V2V Channel Statistics -- 3. Existing Work on V2V/V2R Channels -- 3.1. Deterministic Models -- 3.2. Theoretical Statistical Models -- 3.3. Empirical Statistical Models -- 4. New Non-stationary V2V Channel Models -- 4.1. Modeling Multipath Component Persistence.
4.2. Modeling Propagation Region Transitions and Time-Varying DopplerSpectra -- 4.3. Representative NS V2V Models -- Conclusion -- Acknowledgments -- References -- Chapter 3SMART ANTENNAS IN INTELLIGENTTRANSPORTATION SYSTEMS -- Abstract -- Background -- Material and Methods -- Results -- Conclusion -- Abbreviations -- 1. Introduction -- 2. Smart Antennas and Their Benefits for IntelligentTransportation Systems -- 2.a. Types of Smart Antennas -- 2.b. Benefits of Smart Antennas for ITS -- 2.b.1. Spatial Filtering for Interference Reduction -- 2.b.2. Space Division Multiple Access (SDMA) -- 2.b.3. Location Positioning of Mobile Units -- 3. Array Data Model and Problem Formulation -- 4. Beamforming Algorithms -- 4.a. Conventional Beamformer -- 4.b. Null-steering Beamformer -- 4.c. Optimal Beamformer -- 4.d. Minimum Mean Square Error (MMSE) Beamformer -- 4.e. Adaptive Beamforming Algorithms -- 4.e.1. Sample Matrix Inversion (SMI) Algorithm -- 4.e.2. Least Mean Square (LMS) Algorithm -- 5. Direction of Arrival Estimation -- 5.a. MVDR Estimator -- 5.b. MUltiple SIgnal Classification (MUSIC) Estimator -- 5.c. Estimation of Signal Parameters via Rotational Invariance Technique(ESPRIT) -- 5.d. Maximum Likelihood (ML) Estimator -- 5.d.1. Conditional Maximum Likelihood (CML) Estimator -- 5.d.2. Unconditional Maximum Likelihood (UML) Estimator -- 5.e. Performance Evaluation and Comparison -- 6. Conclusion -- References -- PART 2.PROTOCOLS -- Chapter 4COGNITIVE ROUTING PROTOCOLFOR SENSOR-BASED INTELLIGENTTRANSPORTATION SYSTEM -- Abstract -- Abbreviations -- 1. Introduction -- 2. Distributed and De-Centralized Based ITS Approach -- 2.a. Sensor Nodes -- 2.b. Network Architecture -- 2.c. Data Communication and Processing -- 2.d. Nondeterministic Polynomial Problem -- 2.e. Optimization -- 3. Classical ITS Routing Approach -- 3.a. Topology Based Protocols.
3.b. Location Based Protocols -- 3.c. Performance Based Protocols -- 4. Background: Ant Colony Optimization -- 4.a. Evolution of ANT System -- 4.b. Characeristics of Ant Colony Optimization -- Pheromone Deposition -- State Transition Probability -- Tabu List -- 5. Proposed Approach: Cognitive Routing Protocol -- 5.a. Wireless Channel Constraint -- 5.b. Quality of Service Constraint -- 5.c. Energy Efficiency -- 5.d. Cross-Layer Approach -- Salient Features -- POSets -- Mathematical Approach -- 5.f. Experimental Simulations and Results -- 6. Conclusion -- References -- Chapter 5TDMA MAC PROTOCOLS FOR DSRC-BASEDINTELLIGENT TRANSPORTATION SYSTEMS -- Abstract -- 1. Introduction -- 1.A. Background and Motivation -- 1.b. Related Work -- 2. Vesomac Protocol Details -- 2.a. Frame and Slot Structures -- 2.B. Synchronous and Asynchronous Operation -- 2.c. Protocol Logic -- 2.c.1. Slot Allocation -- 2.c.2. In-band Header Bitmap -- 2.c.3. Transmission Slot Feasibility -- 2.c.4. Protocol Overview -- 2.c.5. Collision Detection and Resolution -- 2.c.6. Protocol Logic Pseudo Code -- 3. Performance Evaluation -- 3.a. Experimental Parameters -- 3.b. VeSOMAC Protocol Convergence -- 3.c. Inter-vehicle Data Transfer Applications Performance -- 3.c.1. UDP based Applications -- 3.c.2. TCP based Applications -- 3.c.3. Application Level Impacts of VeSOMAC Slot Reorganization -- 4. Conclusion -- References -- Chapter 6SECURITY OF VEHICULAR AD HOC NETWORKS -- Abstract -- 1. Introduction -- 1.1. MANETs vs. VANETs -- 1.2. Organization of This Chapter -- 2. Security Requirements and Threat Model -- 2.1. Security Requirements of VANETs -- 2.2. Threat Model -- 3. Vanet Security Provisioning Framework -- 3.1. Framework Overview -- 3.1.1. Security Model -- 3.1.2. Application Model -- 3.1.3. Network Model -- 3.1.4. Threat Model -- 3.1.5. Trust Model -- 3.2. Highlighted Topics.
3.2.1. Information Security -- 3.2.2. Data Security -- 3.2.3. Network Performance -- 3.2.4. Trust Model and Management -- 4. Information Security -- 4.1. General Communication and Group Communication -- 4.2. Message Security -- 4.2.1. Scope of Message Authenticity -- 4.2.2. Existing Schemes -- 4.2.3. Open Issues -- 4.3. Node Accountability and Node Privacy -- 4.3.1. Scopes of the Concepts -- 4.3.2. Node Localization and Location Privacy -- Node Localization -- Location Privacy -- Reconciling Node Localization and Location Privacy -- 4.3.3. Node Authenticity, Node Non-repudiation and Identity Privacy -- Node Authentication -- Node Privacy and Node Non-repudiation -- 4.3.4. Putting Pseudonyms into Practice -- 4.3.5. Open Issues -- 5. Data Security and Network Performance -- 5.1. Data Security -- 5.2. Cooperation-Promotion Approach -- 5.2.1. Existing Schemes -- 5.2.2. Open Issues -- 5.3. Detection-and-Reaction Approach -- 5.3.1. Existing Schemes -- 5.3.2. Open Issues -- 5.4. Security Provisioning vs. Network Performance -- 6. Trust -- 6.1. Trust: Concept and Scope -- 6.2. Trust Modeling and Metrics -- 6.3. Authorization in Trust Model -- 6.4. Trust in VANETs -- 7. Open Issues and Future Work -- 7.1. Privacy vs. Accountability -- 7.2. Data Security -- 7.2.1. Cooperation Enhancement -- 7.2.2. Detection and Reaction -- 7.2.3. Comprehensive Cooperation Schemes -- 7.3. Trust Management -- 7.4. Threat Model -- 8. Conclusion -- References -- Chapter 7HANDOFF MECHANISMS IN IEEE 802.16 NETWORKSSUPPORTING INTELLIGENT TRANSPORTATIONSYSTEMS -- Abstract -- 1. Introduction -- 2. Background: IEEE 802.16 and Its Basic Handoff Scheme -- 2.1. IEEE 802.16 (the WiMAX Standard) -- 2.2. IEEE 802.16e (the WiMAX Mobility) -- 2.3. The Basic IEEE 802.16e Handoff Scheme -- 3. Handoff in ITS: Issues, Examples, and Classification -- 3.1. ITS Handoff Issues.
3.2. ITS VANET Handoff Examples -- 3.2.1. Handoff Decisions Based on Pattern Recognition -- 3.2.2. Handoff Decisions Based on Mobility Estimation -- 3.2.3. Handoff Scheme Based on IEEE 802.11p MAC Protocol -- 3.3. Classification of Handoff Schemes -- 4. IEEE 802.16 Layer-2 Handoff Schemes -- 4.1. Fast Handover Scheme for Real-Time Downlink Services in IEEE802.16e BWA System [11] -- 4.1.1. Scheme Description -- 4.1.2. Feasibility of Supporting IVN -- 4.2. Fast Handover Algorithm for IEEE 802.16e Broadband Wireless AccessSystem [14] -- 4.2.1. Scheme Description -- 4.2.2. Feasibility of Supporting IVN -- 4.3. Adaptive Channel Scanning for IEEE 802.16e [8] -- 4.3.1. Scheme Description -- 4.3.2. Feasibility of Supporting IVN -- 4.4. Hard Handoff Scheme Exploiting Uplink and Downlink Signals in IEEE802.16e Systems[15] -- 4.4.1. Scheme Description -- 4.4.2. Feasibility of Supporting IVN -- 4.5. Summary of 802.16 Layer-2 Handoff Mechanisms -- 5. IEEE 802.16 Layer-3 Handoff Schemes -- 5.1. Mobile Ipv6 Fast Handovers Over IEEE 802.16e Networks [16] -- 5.1.1. Scheme Description -- 5.1.2. Feasibility of Supporting IVN -- 5.2. A Seamless Handover Mechanism for IEEE 802.16e Broadband WirelessAccess [12] -- 5.2.1. Scheme Description -- 5.2.2. Feasibility of supporting IVN -- 5.3. System Aspects and Handover Management for IEEE 802.16e [18] -- 5.3.1. Scheme Description -- 5.3.2. Feasibility of Supporting IVN -- 5.4 Pre-coordination Mechanism for Fast Handover in Wimax Networks [19] -- 5.4.1. Scheme Description -- 5.4.2. Feasibility of Supporting IVN -- 5.5. Fast Handover Scheme for Supporting Network Mobility in IEEE802.16e BWA System [21] -- 5.5.1. Scheme Description -- 5.5.2. Feasibility to Support IVN -- 5.6. Summary of 802.16 Layer-3 Handoff Mechanisms -- 6. Conclusion -- References -- Chapter8BROADCASTTECHNIQUESFORVEHICULARADHOCNETWORKS -- Abstract.
1.Introduction.
ZusatzinfoEnglish
Serie/ReiheTransportation Issues, Policies and R&D
Online-ZugangEBSCO EBS 2024

Bei Problemen beim Zugriff auf diese Online-Quelle beachten Sie unsere Hinweise zum Zugriff auf lizenzierte Angebote von außerhalb des Campus.

Ähnliche Einträge