Representations and characters of groups / / Gordon James and Martin Liebeck.

This book provides a modern introduction to the representation theory of finite groups. Now in its second edition, the authors have revised the text and added much new material. The theory is developed in terms of modules, since this is appropriate for more advanced work, but considerable emphasis is placed upon constructing characters. Included here are the character tables of all groups of order less than 32, and all simple groups of order less than 1000. Applications covered include Burnside's paqb theorem, the use of character theory in studying subgroup structure and permutation groups, and how to use representation theory to investigate molecular vibration. Each chapter features a variety of exercises, with full solutions provided at the end of the book. This will be ideal as a course text in representation theory, and in view of the applications, will be of interest to chemists and physicists as well as mathematicians.

Gespeichert in:
Elektronisch E-Book
Bibliographische Detailangaben
Person James, G. D. (Gordon Douglas), 1945-
Beteiligte Person(en) Liebeck, M. W. (Martin W.), 1954-
Ausgabe2nd ed.
Ort, Verlag, Jahr Cambridge, UK ; New York, NY : Cambridge University Press , 2001
Umfang1 online resource (viii, 458 pages) : : digital, PDF file(s).
ISBN1-107-12542-1
1-139-63692-8
1-283-87103-3
1-139-81164-9
0-511-04524-7
0-511-81453-4
0-511-15478-X
0-511-01700-6
SpracheEnglisch
ZusatzinfoTitle from publisher's bibliographic system (viewed on 05 Oct 2015).
ZusatzinfoCover; Half-title; Title; Copyright; Contents; Preface; 1 Groups and homomorphisms; Groups; 1.1 Examples; Subgroups; 1.2 Examples; Direct products; 1.3 Example; Functions; Homomorphisms; 1.4 Example; 1.5 Example; Cosets; 1.6 Lagrange's Theorem; Normal subgroups; 1.7 Examples; Simple groups; Kernels and images; (1.8); (1.9); 1.10 Theorem; 1.11 Example; Summary of Chapter 1; Exercises for Chapter 1; 2 Vector spaces and linear transformations; Vector spaces; (2.1); 2.2 Examples; Bases of vector spaces; 2.3 Example; (2.4); Subspaces; (2.5); 2.6 Examples; (2.7); Direct sums of subspaces
2.8 Examples(2.9); (2.10); Linear transformations; Kernels and images; (2:11); (2:12); 2.13 Examples; Invertible linear transformations; (2.14); Endomorphisms; (2.15); 2.16 Examples; Matrices; 2.17 Definition; 2.18 Examples; 2.19 Example; (2.20); (2.21); 2.22 Example; Invertible matrices; 2.23 Definition; (2.24); 2.25 Example; Eigenvalues; (2.26); 2.27 Examples; 2.28 Example; Projections; 2.29 Proposition; 2.30 Definition; 2.31 Example; 2.32 Proposition; 2.33 Example; Summary of Chapter 2; Exercises for Chapter 2; 3 Group representations; Representations; 3.1 Definition; 3.2 Examples
Equivalent representations3.3 Definition; 3.4 Examples; Kernels of representations; 3.5 Definition; 3.6 Definition; 3.7 Proposition; 3.8 Examples; Summary of Chapter 3; Exercises for Chapter 3; 4 FG-modules; FG-modules; 4.1 Example; 4.2 Definition; 4.3 Definition; 4.4 Theorem; 4.5 Examples; 4.6 Proposition; (4.7); 4.8 Definitions; Permutation modules; 4.9 Example; 4.10 Definition; 4.11 Example; FG-modules and equivalent representations; 4.12 Theorem; 4.13 Example; Summary of Chapter 4; Exercises for Chapter 4; 5 FG-submodules and reducibility; FG-submodules; 5.1 Definition; 5.2 Examples
Irreducible FG-modules5.3 Definition; (5.4); 5.5 Examples; Summary of Chapter 5; Exercises for Chapter 5; 6 Group algebras; The group algebra of G; 6.1 Example; 6.2 Example; 6.3 Definition; 6.4 Proposition; The regular FG-module; 6.5 Definition; 6.6 Proposition; 6.7 Example; FG acts on an FG-module; 6.8 Definition; 6.9 Examples; 6.10 Proposition; Summary of Chapter 6; Exercises for Chapter 6; 7 FG-homomorphisms; FG-homomorphisms; 7.1 Definition; 7.2 Proposition; 7.3 Examples; Isomorphic FG-modules; 7.4 Definition; 7.5 Proposition; 7.6 Theorem; (7.7); 7.8 Example; 7.9 Example; Direct sums
(7.10)7.11 Proposition; 7.12 Proposition; Summary of Chapter 7; Exercises for Chapter 7; 8 Maschke's Theorem; Maschke's Theorem; 8.1 Maschke's Theorem; 8.2 Examples; (8.3); (8.4); 8.5 Example; Consequences of Maschke's Theorem; 8.6 Definition; 8.7 Theorem; 8.8 Proposition; Summary of Chapter 8; Exercises for Chapter 8; 9 Schur's Lemma; Schur's Lemma; 9.1 Schur's Lemma; 9.2 Proposition; 9.3 Corollary; 9.4 Examples; Reprensentation theory of finite abelian groups; 9.5 Proposition; 9.6 Theorem; (9.7); 9.8 Theorem; 9.9 Examples; Diagonalization; (9.10); 9.11 Proposition
Some further applications of Schur's Lemma
Serie/ReiheCambridge mathematical textbooks
Online-ZugangEBSCO EBS 2024
Cambridge ebooks EBS 2024

Bei Problemen beim Zugriff auf diese Online-Quelle beachten Sie unsere Hinweise zum Zugriff auf lizenzierte Angebote von außerhalb des Campus.

MARC

LEADER 00000nam a2200000 a 4500
001 99370689667806441
005 20200520144314.0
006 m o d |
007 cr||||||||||||
008 010402s2001 enk ob 001 0 eng
020 |a 1-107-12542-1 
020 |a 1-139-63692-8 
020 |a 1-283-87103-3 
020 |a 1-139-81164-9 
020 |a 0-511-04524-7 
020 |a 0-511-81453-4 
020 |a 0-511-15478-X 
020 |a 0-511-01700-6 
035 |a (CKB)111056485655768 
035 |a (EBL)202084 
035 |a (OCoLC)808028315 
035 |a (UkCbUP)CR9780511814532 
035 |a (Au-PeEL)EBL202084 
035 |a (CaPaEBR)ebr10006823 
035 |a (CaONFJC)MIL418353 
035 |a (MiAaPQ)EBC202084 
035 |a (PPN)261287133 
035 |a (EXLCZ)99111056485655768 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
050 4 |a QA176  |b .J36 2001 
082 0 |a 512/.2  |2 21 
100 1 |a James, G. D.  |q (Gordon Douglas),  |d 1945- 
245 1 0 |a Representations and characters of groups /  |c Gordon James and Martin Liebeck. 
250 |a 2nd ed. 
260 |a Cambridge, UK ;  |a New York, NY :  |b Cambridge University Press,  |c 2001. 
300 |a 1 online resource (viii, 458 pages) :  |b digital, PDF file(s). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Cambridge mathematical textbooks 
505 0 |a Cover; Half-title; Title; Copyright; Contents; Preface; 1 Groups and homomorphisms; Groups; 1.1 Examples; Subgroups; 1.2 Examples; Direct products; 1.3 Example; Functions; Homomorphisms; 1.4 Example; 1.5 Example; Cosets; 1.6 Lagrange's Theorem; Normal subgroups; 1.7 Examples; Simple groups; Kernels and images; (1.8); (1.9); 1.10 Theorem; 1.11 Example; Summary of Chapter 1; Exercises for Chapter 1; 2 Vector spaces and linear transformations; Vector spaces; (2.1); 2.2 Examples; Bases of vector spaces; 2.3 Example; (2.4); Subspaces; (2.5); 2.6 Examples; (2.7); Direct sums of subspaces 
505 8 |a 2.8 Examples(2.9); (2.10); Linear transformations; Kernels and images; (2:11); (2:12); 2.13 Examples; Invertible linear transformations; (2.14); Endomorphisms; (2.15); 2.16 Examples; Matrices; 2.17 Definition; 2.18 Examples; 2.19 Example; (2.20); (2.21); 2.22 Example; Invertible matrices; 2.23 Definition; (2.24); 2.25 Example; Eigenvalues; (2.26); 2.27 Examples; 2.28 Example; Projections; 2.29 Proposition; 2.30 Definition; 2.31 Example; 2.32 Proposition; 2.33 Example; Summary of Chapter 2; Exercises for Chapter 2; 3 Group representations; Representations; 3.1 Definition; 3.2 Examples 
505 8 |a Equivalent representations3.3 Definition; 3.4 Examples; Kernels of representations; 3.5 Definition; 3.6 Definition; 3.7 Proposition; 3.8 Examples; Summary of Chapter 3; Exercises for Chapter 3; 4 FG-modules; FG-modules; 4.1 Example; 4.2 Definition; 4.3 Definition; 4.4 Theorem; 4.5 Examples; 4.6 Proposition; (4.7); 4.8 Definitions; Permutation modules; 4.9 Example; 4.10 Definition; 4.11 Example; FG-modules and equivalent representations; 4.12 Theorem; 4.13 Example; Summary of Chapter 4; Exercises for Chapter 4; 5 FG-submodules and reducibility; FG-submodules; 5.1 Definition; 5.2 Examples 
505 8 |a Irreducible FG-modules5.3 Definition; (5.4); 5.5 Examples; Summary of Chapter 5; Exercises for Chapter 5; 6 Group algebras; The group algebra of G; 6.1 Example; 6.2 Example; 6.3 Definition; 6.4 Proposition; The regular FG-module; 6.5 Definition; 6.6 Proposition; 6.7 Example; FG acts on an FG-module; 6.8 Definition; 6.9 Examples; 6.10 Proposition; Summary of Chapter 6; Exercises for Chapter 6; 7 FG-homomorphisms; FG-homomorphisms; 7.1 Definition; 7.2 Proposition; 7.3 Examples; Isomorphic FG-modules; 7.4 Definition; 7.5 Proposition; 7.6 Theorem; (7.7); 7.8 Example; 7.9 Example; Direct sums 
505 8 |a (7.10)7.11 Proposition; 7.12 Proposition; Summary of Chapter 7; Exercises for Chapter 7; 8 Maschke's Theorem; Maschke's Theorem; 8.1 Maschke's Theorem; 8.2 Examples; (8.3); (8.4); 8.5 Example; Consequences of Maschke's Theorem; 8.6 Definition; 8.7 Theorem; 8.8 Proposition; Summary of Chapter 8; Exercises for Chapter 8; 9 Schur's Lemma; Schur's Lemma; 9.1 Schur's Lemma; 9.2 Proposition; 9.3 Corollary; 9.4 Examples; Reprensentation theory of finite abelian groups; 9.5 Proposition; 9.6 Theorem; (9.7); 9.8 Theorem; 9.9 Examples; Diagonalization; (9.10); 9.11 Proposition 
505 8 |a Some further applications of Schur's Lemma 
500 |a Title from publisher's bibliographic system (viewed on 05 Oct 2015). 
520 |a This book provides a modern introduction to the representation theory of finite groups. Now in its second edition, the authors have revised the text and added much new material. The theory is developed in terms of modules, since this is appropriate for more advanced work, but considerable emphasis is placed upon constructing characters. Included here are the character tables of all groups of order less than 32, and all simple groups of order less than 1000. Applications covered include Burnside's paqb theorem, the use of character theory in studying subgroup structure and permutation groups, and how to use representation theory to investigate molecular vibration. Each chapter features a variety of exercises, with full solutions provided at the end of the book. This will be ideal as a course text in representation theory, and in view of the applications, will be of interest to chemists and physicists as well as mathematicians. 
504 |a Includes bibliographical references (p. 454) and index. 
650 0 |a Representations of groups. 
776 |z 0-521-00392-X 
776 |z 0-521-81205-4 
700 1 |a Liebeck, M. W.  |q (Martin W.),  |d 1954- 
830 0 |a Cambridge mathematical textbooks 
906 |a BOOK 
MAN |a false 
POR |0 2022-01-12 15:21:41 Europe/Berlin  |l EBSCOhost  |w BIE-11998  |y 2021-05-03 12:46:53 Europe/Berlin  |2 https://eu04.alma.exlibrisgroup.com/view/uresolver/49HBZ_BIE/openurl?u.ignore_date_coverage=true&portfolio_pid=53318847450006442&Force_direct=true  |a 53318847450006442  |1 2021-05-03 10:46:53  |k false  |r 61317899290006442  |s EBSCO EBS 2024   |c param  |v BIE-28152  |5 62317899280006442  |d https://hbz-network.userservices.exlibrisgroup.com/view/uresolver/49HBZ_BIE/openurl?u.ignore_date_coverage=true&rft.mms_id=991025804451206442  |b Available  |q 613780000000000072  |e BOOK  |8 53318847450006442 
POR |0 2021-06-04 15:05:09 Europe/Berlin  |l Cambridge University Press  |y 2021-06-04 15:05:09 Europe/Berlin  |2 https://eu04.alma.exlibrisgroup.com/view/uresolver/49HBZ_BIE/openurl?u.ignore_date_coverage=true&portfolio_pid=53327251750006442&Force_direct=true  |u Cambridge University Press E-Books EBS  |a 53327251750006442  |1 2021-06-04 13:05:09  |k false  |r 61325881610006442  |t Cambridge EBS  |s Cambridge ebooks EBS 2024  |c param  |v BIE-36100  |5 62325881600006442  |d https://hbz-network.userservices.exlibrisgroup.com/view/uresolver/49HBZ_BIE/openurl?u.ignore_date_coverage=true&rft.mms_id=991025804451206442  |b Available  |q 615280000000001967  |e BOOK  |8 53327251750006442 
035 |a (49HBZ_BIE)991025804451206442 
035 |a (49HBZ_NETWORK)99370689667806441